Thiol/disulfide exchange between rabbit muscle phosphofructokinase and glutathione. Kinetics and thermodynamics of enzyme oxidation.
نویسندگان
چکیده
Reversible thiol/disulfide exchange equilibria between rabbit muscle phosphofructokinase and glutathione redox buffers results in a dependence of the activity of the enzyme on the thiol to disulfide ratio of the redox buffer (Gilbert, H. F. (1982) J. Biol. Chem. 257, 12086-12091). The transition between fully reduced (active) and fully oxidized (inactive) enzyme is half complete at a [GSH]/[GSSG] ratio of 6.5 +/- 1 at pH 8.0 and 5.6 +/- 0.9 at pH 7.2. In the presence of excess GSSG approximately 40-50% of the activity is lost in a rapid process (k = 110 M-1 min-1), while the remaining activity is lost more slowly (k = 1.9 M-1 min-1). Two equivalents of radiolabeled glutathione are incorporated covalently, one coincident with each phase of inactivation. The most rapidly oxidized sulfhydryl group is also the most rapidly reduced by GSH in the reverse reaction (k = 150 M-1 min-1). Reduction of a more slowly reacting protein-glutathione mixed disulfide is required to regenerate the original activity (k = 0.33 M-1 min-1). The thiol/disulfide oxidation equilibrium constant (Kox) for the most rapidly oxidized sulfhydryl group is estimated to be 0.7 while that for the more slowly oxidized group is 6.1. The sulfhydryl group which is more easily oxidized kinetically is the more thermodynamically resistant to oxidation. The magnitude of the equilibrium constants for these reversible oxidations would suggest that the oxidation state (and activity) of phosphofructokinase would not be significantly affected by typical metabolic changes in the glutathione oxidation state in vivo.
منابع مشابه
Biological disulfides: the third messenger? Modulation of phosphofructokinase activity by thiol/disulfide exchange.
Rabbit muscle phosphofructokinase is rapidly inactivated at pH 8.0 by incubation with low concentrations of oxidized glutathione, Coenzyme A glutathione mixed disulfide, and oxidized Coenzyme A. The inactivation is first order in disulfide concentration over the concentration ranges examined (50-200 microM), and is approximately 8-fold slower at pH 7.0 than at pH 8.0. The substrates ATP and fru...
متن کاملThiol/disulfide exchange in the thioredoxin-catalyzed reductive activation of spinach chloroplast fructose-1,6-bisphosphatase. Kinetics and thermodynamics.
Two kinetically and thermodynamically distinct thiol/disulfide redox changes are observed during the reversible thioredoxin fb-catalyzed reduction and oxidation of spinach chloroplast fructose-1,6-bisphosphatase by dithiothreitol. The two processes, which occur at different rates and with different equilibrium constants, can be observed independently in either the reduction (activation) or oxid...
متن کاملReal-time Monitoring of Intermediates Reveals the Reaction Pathway in the Thiol-Disulfide Exchange between Disulfide Bond Formation Protein A (DsbA) and B (DsbB) on a Membrane-immobilized Quartz Crystal Microbalance (QCM)
Background: A device of QCM can be used in the transient kinetics of oxidation of a pair of cysteine residues in DsbA by DsbB. Results: The obtained kinetic parameters indicate that the two pairs of cysteine residues in DsbB are important. Conclusion: The reaction pathway of almost all DsbA oxidation processes would proceed through the stable intermediate. Significance: The transient kinetics o...
متن کاملThe reversible conversion of a protein thiol to a disulfide via an exchange reaction with protein or nonprotein disulfides
In glutathione redox buffers, rat liver, microsomal 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase rapidly equilibrates between a reduced, active form and an oxidized, inactive form. At pH 7.0, 37 “C, the second order rate constant for inactivation of the reduced enzyme by GSSG is 1700 f 200 M-’ min-l, approximately 20-fold faster than the reaction of GSSG with a typical, unhindered ...
متن کاملThe thermodynamics of thiol sulfenylation.
Protein sulfenic acids are essential cysteine oxidations in cellular signaling pathways. The thermodynamics that drive protein sulfenylation are not entirely clear. Experimentally, sulfenic acid reduction potentials are hard to measure, because of their highly reactive nature. We designed a calculation method, the reduction potentials from electronic energies (REE) method, to give for the first...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 261 33 شماره
صفحات -
تاریخ انتشار 1986